179 research outputs found

    Analytical treatment of the wakefields driven by transversely shaped beams in a planar slow-wave structure

    Full text link
    The suppression of transverse wakefield effects using transversely elliptical drive beams in a planar structure is studied with a simple analytical model that unveils the geometric nature of this phenomenon. By analyzing the suggested model we derive scaling laws for the amplitude of the longitudinal and transverse wake potentials as a function of the Gaussian beam ellipticity - σx/a\sigma_x/a. We explicitly show that in a wakefield accelerator application it is beneficial to use highly elliptical beams for mitigating transverse forces while maintaining the accelerating field. We consider two scaling strategies: 1) aperture scaling, where we keep a constant charge to have the same accelerating gradient as in a cylindrical structure and 2) charge scaling, where aperture is the same as in the cylindrical structure and charge is increased to match the gradient.Comment: 10 pages, 6 figure

    Single-shot, transverse self-wakefield reconstruction from screen images

    Full text link
    A single-shot method to reconstruct the transverse self-wakefields acting on a beam, based only on screen images, is introduced. By employing numerical optimization with certain approximations, a relatively high-dimensional parameter space is efficiently explored to determine the multipole components of the transverse-wakefield topology up to desired order. The reconstruction technique complements simulations, which are able to directly describe the wakefield composition based on experimental conditions. The technique is applied to representative simulation results as a benchmark, and also to experimental data on wakefield observations driven in dielectric-lined structures.Comment: 10 pages, 8 figure

    Approaching Petavolts per meter plasmonics using structured semiconductors

    Full text link
    A new class of strongly excited plasmonic modes that open access to unprecedented Petavolts per meter electromagnetic fields promise wide-ranging, transformative impact. These modes are constituted by large amplitude oscillations of the ultradense, delocalized free electron Fermi gas which is inherent in conductive media. Here structured semiconductors with appropriate concentration of n-type dopant are introduced to tune the properties of the Fermi gas for matched excitation of an electrostatic, surface "crunch-in" plasmon using readily available electron beams of ten micron overall dimensions and hundreds of picoCoulomb charge launched inside a tube. Strong excitation made possible by matching results in relativistic oscillations of the Fermi electron gas and uncovers unique phenomena. Relativistically induced ballistic electron transport comes about due to relativistic multifold increase in the mean free path. Acquired ballistic transport also leads to unconventional heat deposition beyond the Ohm's law. This explains the absence of observed damage or solid-plasma formation in experiments on interaction of conductive samples with electron bunches shorter than 1013seconds\rm 10^{-13} seconds. Furthermore, relativistic momentum leads to copious tunneling of electron gas allowing it to traverse the surface and crunch inside the tube. Relativistic effects along with large, localized variation of Fermi gas density underlying these modes necessitate the kinetic approach coupled with particle-in-cell simulations. Experimental verification of acceleration and focusing of electron beams modeled here using tens of Gigavolts per meter fields excited in semiconductors with 1018cm3\rm 10^{18}cm^{-3} free electron density will pave the way for Petavolts per meter plasmonics.Comment: 16 pages, 10 figure

    Simulation studies for dielectric wakefield programme at CLARA facility

    Full text link
    Short, high charge electron bunches can drive high magnitude electric fields in dielectric lined structures. The interaction of the electron bunch with this field has several applications including high gradient dielectric wakefield acceleration (DWA) and passive beam manipulation. The simulations presented provide a prelude to the commencement of an experimental DWA programme at the CLARA accelerator at Daresbury Laboratory. The key goals of this program are: tunable generation of THz radiation, understanding of the impact of transverse wakes, and design of a dechirper for the CLARA FEL. Computations of longitudinal and transverse phase space evolution were made with Impact-T and VSim to support both of these goals.Comment: 10 Pages, 4 Figures, Proceedings of EAAC2017 Conferenc

    Tunable Electron Multibunch Production in Plasma Wakefield Accelerators

    Get PDF
    Synchronized, independently tunable and focused μ\muJ-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the position of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers

    Machine learning-based analysis of experimental electron beams and gamma energy distributions

    Full text link
    The photon flux resulting from high-energy electron beam interactions with high field systems, such as in the upcoming FACET-II experiments at SLAC National Accelerator Laboratory, may give deep insight into the electron beam's underlying dynamics at the interaction point. Extraction of this information is an intricate process, however. To demonstrate how to approach this challenge with modern methods, this paper utilizes data from simulated plasma wakefield acceleration-derived betatron radiation experiments and high-field laser-electron-based radiation production to determine reliable methods of reconstructing key beam and interaction properties. For these measurements, recovering the emitted 200 keV to 10 GeV photon energy spectra from two advanced spectrometers now being commissioned requires testing multiple methods to finalize a pipeline from their responses to incident electron beam information. In each case, we compare the performance of: neural networks, which detect patterns between data sets through repeated training; maximum likelihood estimation (MLE), a statistical technique used to determine unknown parameters from the distribution of observed data; and a hybrid approach combining the two. Further, in the case of photons with energies above 30 MeV, we also examine the efficacy of QR decomposition, a matrix decomposition method. The betatron radiation and the high-energy photon cases demonstrate the effectiveness of a hybrid ML-MLE approach, while the high-field electrodynamics interaction and the low-energy photon cases showcased the machine learning (ML) model's efficiency in the presence of noise. As such, while there is utility in all the methods, the ML-MLE hybrid approach proves to be the most generalizable.Comment: 23 pages, 30 figure

    Shear-Wave Elastography Assessments of Quadriceps Stiffness Changes prior to, during and after Prolonged Exercise: A Longitudinal Study during an Extreme Mountain Ultra-Marathon.

    Get PDF
    In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for diagnosing and monitoring muscle changes

    Sextupole Correction of the Longitudinal Transport of Relativistic Beams in Dispersionless Translating Sections

    Get PDF
    Abstract We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg. Through heuristic analytical arguments and examples derived from recent experimental efforts, augmented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are found to be effective in optimizing the use of such structures for beam compression or for shaping the current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal dispersion of the beam is presented. The theoretical and experimental results indicate that these manipulations can be used to create an electron bunch with a current profile having a long ramp followed by a sharp cut-off, which is optimal for driving large amplitude wake fields in a plasma wake field accelerator

    Hot spots and dark current in advanced plasma wakefield accelerators

    Get PDF
    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed
    corecore